							- 1	- 1	- 1	
	1	i i	1	1				- 1	í	
								- 1	1	
HICN		1				1	ı i			
0.514				1			1	1		
						1				

M.Tech. Degree Examination, Dec.2014/Jan.2015

Advances in VLSI Design

me: 3 hrs.

Note: Answer any FIVE full questions.

Explain in detail BiCMOS fabrication in n-well process.

Compare CMOS and Bipolar technologies.

- Explain the following forms of an inverter circuit if pull up transistor is replaced by:
 - Load resistor
 - CMOS pull up
 - iii) n-MOS enhancement transistor
 - iv) n-MOS depletion mode transistor

(08 Marks)

- Explain JFET device and its V-I characteristics for: 2
 - Zero gate bias applied

ii) Non-zero gate bias applied

(10 Marks)

- b. With the help of a band diagram, explain the basic principle of modulation doping and also the operation of a HEMT device formed with GaAS/GaAlAs.
- A JFET has $N_a = 10^{19}/\text{cm}^3$, $N_d = 10^{16}/\text{cm}^3$, $a = 0.1\mu\text{m}$, $L = 10~\mu\text{m}$ and Z = 1~mm. Assume the device is S_i with $N_i = 10^{10}/\text{cm}^3$ and a relative dielectric constant of 11.8. Assume also that in 3 saturation the square law can be used and that the value of I_{DO} is 5.0 μA . Determine the following:
 - i) The built-in voltage -
 - ii) The pinch of voltage
 - iii) The drain saturation voltage if $V_G = -2V$.
 - iv) The drain current if $V_D = 1V$ and the gate bias is -2V.

(10 Marks)

- b. Draw and explain the energy band diagram of an MIS structure under:
 - Forward bias
 - ii) Low reverse bias
 - iii) High reverse bias

(10 Marks)

- Quantitatively determine the relationship between I_D, V_{GS} and V_D under different biasing conditions for MOSFET device. (10 Marks)
 - Consider an n-channel Si MOSFET with the following information:

 $V_T = 2V$, oxide thickness d = 0.1 nm, $\mu_n^1 = 500 \text{ cm}^2/VS$, $Z = 10 \mu\text{m}$, $L = 10 \mu\text{m}$.

Calculate the drain current assuming the gate voltage is $V_G = 6V$ and that the drain voltage is (i) 1V and (ii) 6V. (10 Marks)

- 5 With suitable mathematical analysis describe the short channel effects as applied to V_T reduction and surface mobility in a MOSFET. (10 Marks)
 - b. Bring out the difference between constant field, constant voltage and quasi constant voltage scaling methods. (04 Marks)
 - c. Explain the working principle of carbon nanotubes.

(06 Marks)

6 a. What do you mean by defect tolerant computing?

(04 Marks)

- b. What is the need for super buffers? Explain NMOS inverting and non inverting super buffers with the help of schematic and stick diagrams. (10 Marks)
- c. Explain the working of a BiCMOS inverter with relevant circuit diagram in which problems associated with stored charge in the base of non conducting transistors (BJT). How the problem can be prevented?
- 7 A. What are the major rules associated while designing NMOS pass transistor logic? Highlight any two advantages of pass transistor logic. (05 Marks)
 - b. Draw the circuit, stick diagram for CMOS transmission gate.

(05 Marks)

c. Explain the conceptual approach in designing a tally circuit with the help of tree network.

(10 Marks)

- 8 a. Explain the terms hierarchy, regularity, modularity and locality as applied to structured design strategies. (10 Marks)
 - b. Write explanatory potes on:

- i) Local routing using line-search approach.
- ii) Standard cell based design.

(10 Marks)